Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 3,4-O-isopropylidene-2-O-[(methylsulfanyl)thiocarbonyl]- β -Larabinoside

Hongqi Li,^a* Yanxi Song^b and Xiumei Li^c

^aKey Laboratory of the Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, ^bCollege of Environmental Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China, and ^cDepartment of Physics and Technology, Inner Mongolia Tongliao Vocational College, Tongliao 028000, People's Republic of China

Correspondence e-mail: hongqili@dhu.edu.cn

Received 15 March 2008; accepted 22 April 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.100; data-to-parameter ratio = 18.7.

In the title compound, $C_{11}H_{18}O_5S_2$, the six- and fivemembered rings adopt a chair and an approximately planar conformation, respectively.

Related literature

For related literature, see: Zhang et al. (1999).

Experimental

Crystal data

 $\begin{array}{l} C_{11}H_{18}O_5S_2\\ M_r = 294.37\\ \text{Orthorhombic, } P2_12_12_1\\ a = 9.1381 \ (9) \text{ Å}\\ b = 11.2898 \ (11) \text{ Å}\\ c = 13.9405 \ (14) \text{ Å} \end{array}$

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) $T_{min} = 0.752, T_{max} = 1.000$ (expected range = 0.649–0.863)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.099$ S = 0.953115 reflections 167 parameters H-atom parameters constrained $V = 1438.2 (2) \text{ Å}^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.38 \text{ mm}^{-1}\) T = 293 (2) K 0.50 \times 0.41 \times 0.39 \text{ mm}\)

8467 measured reflections 3115 independent reflections 2487 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.098$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 1306 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ -0.05 \ (8)} \end{array}$

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL* software used to prepare material for publication: *SHELXTL*.

Financial support of this project by the Program for Changjiang Scholars and Innovative Research Team in Universities (No. IRT0526) and Shanghai Natural Science Foundation (No. 06ZR14001) is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2082).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhang, W., Ramasamy, K. & Averett, D. R. (1999). Nucleosides Nucleotides, 18, 2357–2365. supplementary materials

Acta Cryst. (2008). E64, o933 [doi:10.1107/S1600536808011458]

Methyl 3,4-O-isopropylidene-2-O-[(methylsulfanyl)thiocarbonyl]- β -L-arabinoside

H. Li, Y. Song and X. Li

Comment

The title compound is an important intermediate for synthesis of 2-deoxy-*L*-ribose and was synthesized starting from *L*-arabinose according to the procedures reported by Zhang *et al.* (1999). Herein we present the single-crystal structure of methyl 3,4-*O*-isopropylidene-2-O– [(methylthio)thiocarbonyl]-β-*L*-arabinoside.

Experimental

The title compound was prepared from *L*-arabinose according to the procedures reported by Zhang *et al.* (1999). Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethyl acetate.

Refinement

All H atoms were placed at calculated positions using a riding model, with C—H = 0.96Å for methyl C—H, 0.97Å for methylene C—H, and 0.98Å for methine C—H and with $U_{iso}(H) = 1.2U_{eq}(C)$ except for methyl groups $U_{iso}(H) = 1.5U_{eq}(C)$.

Figures

Fig. 1. A view of the molecule of the title compound. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Fig. 2. The crystal structure of the title compound, viewed along *a* axis.

Methyl 3,4-O-isopropylidene-2-O-[(methylsulfanyl)thiocarbonyl]-\ β-L-arabinoside

Crystal data	
$C_{11}H_{18}O_5S_2$	$D_{\rm x} = 1.360 {\rm ~Mg~m}^{-3}$
$M_r = 294.37$	Melting point = $403-400$ K
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
<i>a</i> = 9.1381 (9) Å	Cell parameters from 3384 reflections

b = 11.2898 (11) Å	$\theta = 4.6 - 47.9^{\circ}$
c = 13.9405 (14) Å	$\mu = 0.38 \text{ mm}^{-1}$
V = 1438.2 (2) Å ³	T = 293 (2) K
Z = 4	Prismatic, colorless
$F_{000} = 624$	$0.50\times0.41\times0.39~mm$

Data collection

Bruker APEX CCD diffractometer	3115 independent reflections
Radiation source: fine-focus sealed tube	2487 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.098$
T = 293(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
φ scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -11 \rightarrow 8$
$T_{\min} = 0.752, T_{\max} = 1.000$	$k = -14 \rightarrow 14$
8467 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.042$	$w = 1/[\sigma^2(F_o^2) + (0.0386P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.099$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.95	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
3115 reflections	$\Delta \rho_{\rm min} = -0.19 \ e \ {\rm \AA}^{-3}$
167 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1306 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: -0.05 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.98335 (7)	1.00851 (6)	0.84959 (5)	0.0646 (2)
S2	0.91603 (8)	0.75403 (5)	0.89614 (5)	0.0669 (2)
01	0.72545 (17)	0.90443 (12)	0.86747 (11)	0.0509 (4)
O2	0.5721 (2)	1.16759 (15)	0.75190 (13)	0.0639 (5)
O3	0.51511 (18)	1.00383 (13)	1.00502 (12)	0.0567 (4)
O4	0.44353 (18)	1.18675 (13)	0.95542 (11)	0.0593 (4)
05	0.5692 (2)	0.97000 (14)	0.70389 (12)	0.0605 (4)
C1	0.8723 (3)	0.90034 (18)	0.86865 (16)	0.0473 (5)
C2	0.6525 (2)	1.01781 (17)	0.85773 (15)	0.0457 (5)
H2	0.7075	1.0776	0.8937	0.055*
C3	0.6417 (3)	1.0560 (2)	0.7547 (2)	0.0544 (6)
Н3	0.7408	1.0643	0.7286	0.065*
C4	0.4237 (3)	1.1616 (3)	0.78384 (19)	0.0674 (7)
H4A	0.3675	1.1162	0.7376	0.081*
H4B	0.3837	1.2411	0.7852	0.081*
C5	0.4044 (3)	1.1071 (2)	0.88035 (19)	0.0601 (6)
H5	0.3020	1.0833	0.8883	0.072*
C6	0.5033 (2)	1.00210 (18)	0.90391 (17)	0.0522 (5)
H6	0.4582	0.9280	0.8824	0.063*
C7	0.4676 (3)	1.1180 (2)	1.03915 (17)	0.0576 (6)
C8	0.5872 (3)	1.1738 (2)	1.0974 (2)	0.0746 (8)
H8A	0.6729	1.1831	1.0584	0.112*
H8B	0.6097	1.1240	1.1513	0.112*
H8C	0.5555	1.2499	1.1200	0.112*
C9	0.3288 (3)	1.1016 (3)	1.0968 (2)	0.0898 (10)
H9A	0.2923	1.1776	1.1163	0.115*
H9B	0.3494	1.0546	1.1525	0.115*
H9C	0.2567	1.0624	1.0581	0.115*
C10	0.5657 (3)	0.9914 (3)	0.60277 (18)	0.0719 (7)
H10A	0.4948	1.0517	0.5889	0.108*
H10B	0.5395	0.9198	0.5699	0.108*
H10C	0.6605	1.0171	0.5816	0.108*
C11	1.1125 (3)	0.7582 (3)	0.8980 (2)	0.0867 (10)
H11A	1.1483	0.7774	0.8351	0.110*
H11B	1.1496	0.6822	0.9170	0.110*
H11C	1.1446	0.8173	0.9428	0.110*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)	
---	--

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0495 (3)	0.0544 (3)	0.0899 (5)	-0.0063 (3)	-0.0028 (3)	0.0012 (3)
S2	0.0618 (4)	0.0451 (3)	0.0938 (5)	0.0156 (3)	0.0026 (4)	0.0094 (4)
01	0.0464 (8)	0.0338 (7)	0.0726 (10)	0.0039 (6)	-0.0027 (8)	0.0054 (7)
02	0.0733 (12)	0.0430 (8)	0.0754 (11)	0.0076 (9)	-0.0087 (10)	0.0124 (8)

supplementary materials

03	0.0616 (10)	0.0418 (8)	0.0667 (9)	0.0057 (9)	0.0069 (8)	0.0086 (7)
O4	0.0588 (10)	0.0438 (8)	0.0753 (10)	0.0135 (8)	-0.0043 (9)	0.0031 (8)
05	0.0642 (11)	0.0504 (8)	0.0668 (10)	0.0004 (8)	-0.0101 (8)	-0.0006 (8)
C1	0.0475 (12)	0.0417 (11)	0.0526 (13)	0.0062 (9)	-0.0033 (10)	-0.0031 (10)
C2	0.0447 (11)	0.0299 (9)	0.0626 (14)	0.0015 (9)	-0.0038 (10)	0.0039 (10)
C3	0.0484 (13)	0.0420 (11)	0.0726 (16)	0.0007 (11)	-0.0045 (11)	0.0051 (11)
C4	0.0679 (17)	0.0574 (14)	0.0767 (18)	0.0202 (15)	-0.0196 (15)	0.0030 (13)
C5	0.0428 (12)	0.0521 (12)	0.0854 (18)	0.0067 (11)	-0.0077 (13)	0.0011 (13)
C6	0.0465 (12)	0.0382 (10)	0.0719 (15)	-0.0009 (11)	-0.0028 (11)	0.0009 (11)
C7	0.0583 (16)	0.0469 (12)	0.0676 (15)	0.0092 (11)	0.0070 (13)	0.0079 (11)
C8	0.0845 (19)	0.0596 (15)	0.0799 (18)	0.0064 (16)	-0.0079 (17)	-0.0018 (14)
C9	0.070 (2)	0.095 (2)	0.104 (2)	0.0147 (18)	0.0279 (18)	0.005 (2)
C10	0.0788 (18)	0.0741 (17)	0.0629 (15)	0.0076 (16)	-0.0103 (15)	-0.0025 (14)
C11	0.0576 (16)	0.085 (2)	0.117 (2)	0.0362 (16)	0.0070 (16)	0.017 (2)

Geometric parameters (Å, °)

S1—C1	1.610(2)	C4—H4B	0.9700
S2—C1	1.742 (2)	C5—C6	1.526 (3)
S2—C11	1.796 (3)	С5—Н5	0.9800
O1—C1	1.343 (3)	С6—Н6	0.9800
O1—C2	1.450 (2)	C7—C8	1.501 (4)
O2—C3	1.412 (3)	С7—С9	1.513 (4)
O2—C4	1.429 (3)	C8—H8A	0.9600
O3—C6	1.414 (3)	C8—H8B	0.9600
O3—C7	1.441 (3)	C8—H8C	0.9600
O4—C7	1.419 (3)	С9—Н9А	0.9600
O4—C5	1.426 (3)	С9—Н9В	0.9600
O5—C3	1.372 (3)	С9—Н9С	0.9600
O5—C10	1.431 (3)	C10—H10A	0.9600
C2—C3	1.503 (3)	C10—H10B	0.9600
C2—C6	1.518 (3)	C10—H10C	0.9600
С2—Н2	0.9800	C11—H11A	0.9600
С3—Н3	0.9800	C11—H11B	0.9600
C4—C5	1.490 (4)	C11—H11C	0.9600
C4—H4A	0.9700		
C1—S2—C11	101.97 (14)	C2—C6—C5	110.47 (18)
C1—O1—C2	119.41 (16)	O3—C6—H6	110.4
C3—O2—C4	112.1 (2)	С2—С6—Н6	110.4
C6—O3—C7	108.58 (16)	С5—С6—Н6	110.4
C7—O4—C5	107.30 (18)	O4—C7—O3	105.34 (18)
C3—O5—C10	113.5 (2)	O4—C7—C8	109.2 (2)
O1—C1—S1	127.00 (16)	O3—C7—C8	109.6 (2)
O1—C1—S2	105.33 (15)	O4—C7—C9	111.9 (2)
S1—C1—S2	127.66 (14)	O3—C7—C9	108.6 (2)
O1—C2—C3	111.91 (17)	C8—C7—C9	112.0 (2)
O1—C2—C6	105.68 (16)	С7—С8—Н8А	109.5
C3—C2—C6	112.33 (18)	C7—C8—H8B	109.5
O1—C2—H2	108.9	H8A—C8—H8B	109.5

C3—C2—H2	108.9	С7—С8—Н8С	109.5
С6—С2—Н2	108.9	H8A—C8—H8C	109.5
O5—C3—O2	113.57 (19)	H8B—C8—H8C	109.5
O5—C3—C2	108.75 (18)	С7—С9—Н9А	109.5
O2—C3—C2	108.2 (2)	С7—С9—Н9В	109.5
O5—C3—H3	108.8	Н9А—С9—Н9В	109.5
O2—C3—H3	108.8	С7—С9—Н9С	109.5
С2—С3—Н3	108.8	Н9А—С9—Н9С	109.5
O2—C4—C5	114.4 (2)	Н9В—С9—Н9С	109.5
O2—C4—H4A	108.7	O5-C10-H10A	109.5
C5—C4—H4A	108.7	O5-C10-H10B	109.5
O2—C4—H4B	108.7	H10A-C10-H10B	109.5
C5—C4—H4B	108.7	O5-C10-H10C	109.5
H4A—C4—H4B	107.6	H10A-C10-H10C	109.5
O4—C5—C4	111.9 (2)	H10B-C10-H10C	109.5
O4—C5—C6	100.59 (17)	S2—C11—H11A	109.5
C4—C5—C6	116.4 (2)	S2—C11—H11B	109.5
O4—C5—H5	109.2	H11A—C11—H11B	109.5
С4—С5—Н5	109.2	S2—C11—H11C	109.5
С6—С5—Н5	109.2	H11A—C11—H11C	109.5
O3—C6—C2	110.65 (18)	H11B—C11—H11C	109.5
O3—C6—C5	104.42 (18)		
C2-O1-C1-S1	-6.7 (3)	O2—C4—C5—C6	-38.1 (3)
C2	172.78 (14)	C7—O3—C6—C2	102.62 (19)
C11—S2—C1—O1	-179.09 (17)	C7—O3—C6—C5	-16.2 (2)
C11—S2—C1—S1	0.4 (2)	01-C2-C6-03	76.4 (2)
C1—O1—C2—C3	83.2 (2)	C3—C2—C6—O3	-161.29 (17)
C1—O1—C2—C6	-154.27 (19)	O1—C2—C6—C5	-168.44 (17)
C10—O5—C3—O2	65.6 (3)	C3—C2—C6—C5	-46.1 (2)
C10—O5—C3—C2	-173.94 (19)	O4—C5—C6—O3	32.2 (2)
C4—O2—C3—O5	55.4 (3)	C4—C5—C6—O3	153.3 (2)
C4—O2—C3—C2	-65.4 (2)	O4—C5—C6—C2	-86.8 (2)
O1—C2—C3—O5	57.3 (2)	C4—C5—C6—C2	34.3 (3)
C6—C2—C3—O5	-61.4 (2)	C5—O4—C7—O3	28.4 (2)
01	-178.93 (17)	C5—O4—C7—C8	146.0 (2)
C6—C2—C3—O2	62.4 (2)	С5—О4—С7—С9	-89.5 (3)
C3—O2—C4—C5	54.0 (3)	C6—O3—C7—O4	-6.3 (2)
C7—O4—C5—C4	-161.4 (2)	C6—O3—C7—C8	-123.6 (2)
C7—O4—C5—C6	-37.1 (2)	C6—O3—C7—C9	113.8 (2)
O2—C4—C5—O4	76.8 (3)		

Fig. 1

